15 research outputs found

    Exploiting Weak Supermodularity for Coalition-Proof Mechanisms

    Get PDF
    Under the incentive-compatible Vickrey-Clarke-Groves mechanism, coalitions of participants can influence the auction outcome to obtain higher collective profit. These manipulations were proven to be eliminated if and only if the market objective is supermodular. Nevertheless, several auctions do not satisfy the stringent conditions for supermodularity. These auctions include electricity markets, which are the main motivation of our study. To characterize nonsupermodular functions, we introduce the supermodularity ratio and the weak supermodularity. We show that these concepts provide us with tight bounds on the profitability of collusion and shill bidding. We then derive an analytical lower bound on the supermodularity ratio. Our results are verified with case studies based on the IEEE test systems

    Designing Coalition-Proof Reverse Auctions over Continuous Goods

    Full text link
    This paper investigates reverse auctions that involve continuous values of different types of goods, general nonconvex constraints, and second stage costs. We seek to design the payment rules and conditions under which coalitions of participants cannot influence the auction outcome in order to obtain higher collective utility. Under the incentive-compatible Vickrey-Clarke-Groves mechanism, we show that coalition-proof outcomes are achieved if the submitted bids are convex and the constraint sets are of a polymatroid-type. These conditions, however, do not capture the complexity of the general class of reverse auctions under consideration. By relaxing the property of incentive-compatibility, we investigate further payment rules that are coalition-proof without any extra conditions on the submitted bids and the constraint sets. Since calculating the payments directly for these mechanisms is computationally difficult for auctions involving many participants, we present two computationally efficient methods. Our results are verified with several case studies based on electricity market data

    Multi-robot task allocation for safe planning under dynamic uncertainties

    Full text link
    This paper considers the problem of multi-robot safe mission planning in uncertain dynamic environments. This problem arises in several applications including safety-critical exploration, surveillance, and emergency rescue missions. Computation of a multi-robot optimal control policy is challenging not only because of the complexity of incorporating dynamic uncertainties while planning, but also because of the exponential growth in problem size as a function of the number of robots. Leveraging recent works obtaining a tractable safety maximizing plan for a single robot, we propose a scalable two-stage framework to solve the problem at hand. Specifically, the problem is split into a low-level single-agent planning problem and a high-level task allocation problem. The low-level problem uses an efficient approximation of stochastic reachability for a Markov decision process to handle the dynamic uncertainty. The task allocation, on the other hand, is solved using polynomial-time forward and reverse greedy heuristics. The safety objective of our multi-robot safe planning problem allows an implementation of the greedy heuristics through a distributed auction-based approach. Moreover, by leveraging the properties of the safety objective function, we ensure provable performance bounds on the safety of the approximate solutions proposed by these two heuristics. Our result is illustrated through case studies

    Actuator Placement for Optimizing Network Performance under Controllability Constraints

    Full text link
    With the rising importance of large-scale network control, the problem of actuator placement has received increasing attention. Our goal in this paper is to find a set of actuators minimizing the metric that measures the average energy consumption of the control inputs while ensuring structural controllability of the network. As this problem is intractable, greedy algorithm can be used to obtain an approximate solution. To provide a performance guarantee for this approach, we first define the submodularity ratio for the metric under consideration and then reformulate the structural controllability constraint as a matroid constraint. This shows that the problem under study can be characterized by a matroid optimization involving a weakly submodular objective function. Then, we derive a novel performance guarantee for the greedy algorithm applied to this class of optimization problems. Finally, we show that the matroid feasibility check for the greedy algorithm can be cast as a maximum matching problem in a certain auxiliary bipartite graph related to the network graph

    Game Theoretic Analysis of Electricity Market Auction Mechanisms

    No full text
    We consider two prominent mechanisms for the electricity market; the pay-as-bid mechanism, currently applied in certain control reserve markets, and the proposed Vickrey- Clarke-Groves mechanism, an established auction mechanism used in advertising and spectrum auctions, for example. Bringing in tools from game theory and auction theory, we compare the Nash equilibria of these two mechanisms in terms of social efficiency and strategic behavior of the players. Furthermore, by formulating a coalitional game corresponding to the electricity market, we propose alternative mechanisms that incentivize truthful bidding while ensuring shill bidding is not profitable. Finally, we analyze the proposed mechanisms in a case study based on electricity market data
    corecore